TED日本語
TED Talks(英語 日本語字幕付き動画)
TED日本語 - ダフニー・コラー: オンライン教育が教えてくれること
TED Talks
オンライン教育が教えてくれること
What we're learning from online education
ダフニー・コラー
Daphne Koller
内容
ダフニー・コラーは最も好奇心をそそる授業を無料でネットに公開するようトップクラスの大学を口説いています。単にサービスを提供するというだけでなく、それは人がいかに学ぶかを研究できる機会を与えます。キー入力、確認クイズ、フォーラムでの学生同士の議論、自己採点の宿題の1つひとつから、知識がいかに処理され、さらには吸収されるのかを示す、かつてないデータを収集できるのです。
字幕
SCRIPT
Script
Like many of you, I'm one of the lucky people. I was born to a family where education was pervasive. I'm a third-generation PhD, a daughter of two academics. In my childhood, I played around in my father's university lab. So it was taken for granted that I attend some of the best universities, which in turn opened the door to a world of opportunity.
Unfortunately, most of the people in the world are not so lucky. In some parts of the world, for example, South Africa, education is just not readily accessible. In South Africa, the educational system was constructed in the days of apartheid for the white minority. And as a consequence, today there is just not enough spots for the many more people who want and deserve a high quality education. That scarcity led to a crisis in January of this year at the University of Johannesburg. There were a handful of positions left open from the standard admissions process, and the night before they were supposed to open that for registration, thousands of people lined up outside the gate in a line a mile long, hoping to be first in line to get one of those positions. When the gates opened, there was a stampede, and 20 people were injured and one woman died. She was a mother who gave her life trying to get her son a chance at a better life.
But even in parts of the world like the United States where education is available, it might not be within reach. There has been much discussed in the last few years about the rising cost of health care. What might not be quite as obvious to people is that during that same period the cost of higher education tuition has been increasing at almost twice the rate, for a total of 559 percent since 1985. This makes education unaffordable for many people.
Finally, even for those who do manage to get the higher education, the doors of opportunity might not open. Only a little over half of recent college graduates in the United States who get a higher education actually are working in jobs that require that education. This, of course, is not true for the students who graduate from the top institutions, but for many others, they do not get the value for their time and their effort.
Tom Friedman, in his recent New York Times article, captured, in the way that no one else could, the spirit behind our effort. He said the big breakthroughs are what happen when what is suddenly possible meets what is desperately necessary. I've talked about what's desperately necessary. Let's talk about what's suddenly possible.
What's suddenly possible was demonstrated by three big Stanford classes, each of which had an enrollment of 100,000 people or more. So to understand this, let's look at one of those classes, the Machine Learning class offered by my colleague and cofounder Andrew Ng. Andrew teaches one of the bigger Stanford classes. It's a Machine Learning class, and it has 400 people enrolled every time it's offered. When Andrew taught the Machine Learning class to the general public, it had 100,000 people registered. So to put that number in perspective, for Andrew to reach that same size audience by teaching a Stanford class, he would have to do that for 250 years. Of course, he'd get really bored.
So, having seen the impact of this, Andrew and I decided that we needed to really try and scale this up, to bring the best quality education to as many people as we could. So we formed Coursera, whose goal is to take the best courses from the best instructors at the best universities and provide it to everyone around the world for free. We currently have 43 courses on the platform from four universities across a range of disciplines, and let me show you a little bit of an overview of what that looks like.
(Video) Robert Ghrist: Welcome to Calculus.
Ezekiel Emanuel: Fifty million people are uninsured.
Scott Page: Models help us design more effective institutions and policies. We get unbelievable segregation.
Scott Klemmer: So Bush imagined that in the future, you'd wear a camera right in the center of your head.
Mitchell Duneier: Mills wants the student of sociology to develop the quality of mind ...
RG: Hanging cable takes on the form of a hyperbolic cosine.
Nick Parlante: For each pixel in the image, set the red to zero.
Paul Offit: ... Vaccine allowed us to eliminate polio virus.
Dan Jurafsky: Does Lufthansa serve breakfast and San Jose? Well, that sounds funny.
Daphne Koller: So this is which coin you pick, and this is the two tosses.
Andrew Ng: So in large-scale machine learning, we'd like to come up with computational ...
(Applause)
DK: It turns out, maybe not surprisingly, that students like getting the best content from the best universities for free. Since we opened the website in February, we now have 640,000 students from 190 countries. We have 1.5 million enrollments,6 million quizzes in the 15 classes that have launched so far have been submitted, and 14 million videos have been viewed.
But it's not just about the numbers, it's also about the people. Whether it's Akash, who comes from a small town in India and would never have access in this case to a Stanford-quality course and would never be able to afford it. Or Jenny, who is a single mother of two and wants to hone her skills so that she can go back and complete her master's degree. Or Ryan, who can't go to school, because his immune deficient daughter can't be risked to have germs come into the house, so he couldn't leave the house. I'm really glad to say -- recently, we've been in correspondence with Ryan -- that this story had a happy ending. Baby Shannon -- you can see her on the left -- is doing much better now, and Ryan got a job by taking some of our courses.
So what made these courses so different? After all, online course content has been available for a while. What made it different was that this was real course experience. It started on a given day, and then the students would watch videos on a weekly basis and do homework assignments. And these would be real homework assignments for a real grade, with a real deadline. You can see the deadlines and the usage graph. These are the spikes showing that procrastination is global phenomenon.
(Laughter)
At the end of the course, the students got a certificate. They could present that certificate to a prospective employer and get a better job, and we know many students who did. Some students took their certificate and presented this to an educational institution at which they were enrolled for actual college credit. So these students were really getting something meaningful for their investment of time and effort.
Let's talk a little bit about some of the components that go into these courses. The first component is that when you move away from the constraints of a physical classroom and design content explicitly for an online format, you can break away from, for example, the monolithic one-hour lecture. You can break up the material, for example, into these short, modular units of eight to 12 minutes, each of which represents a coherent concept. Students can traverse this material in different ways, depending on their background, their skills or their interests. So, for example, some students might benefit from a little bit of preparatory material that other students might already have. Other students might be interested in a particular enrichment topic that they want to pursue individually. So this format allows us to break away from the one-size-fits-all model of education, and allows students to follow a much more personalized curriculum.
Of course, we all know as educators that students don't learn by sitting and passively watching videos. Perhaps one of the biggest components of this effort is that we need to have students who practice with the material in order to really understand it. There's been a range of studies that demonstrate the importance of this. This one that appeared in Science last year, for example, demonstrates that even simple retrieval practice, where students are just supposed to repeat what they already learned gives considerably improved results on various achievement tests down the line than many other educational interventions.
We've tried to build in retrieval practice into the platform, as well as other forms of practice in many ways. For example, even our videos are not just videos. Every few minutes, the video pauses and the students get asked a question.
(Video) SP: ... These four things. Prospect theory, hyperbolic discounting, status quo bias, base rate bias. They're all well documented. So they're all well documented deviations from rational behavior.
DK: So here the video pauses, and the student types in the answer into the box and submits. Obviously they weren't paying attention.
(Laughter)
So they get to try again, and this time they got it right. There's an optional explanation if they want. And now the video moves on to the next part of the lecture. This is a kind of simple question that I as an instructor might ask in class, but when I ask that kind of a question in class,80 percent of the students are still scribbling the last thing I said,15 percent are zoned out on Facebook, and then there's the smarty pants in the front row who blurts out the answer before anyone else has had a chance to think about it, and I as the instructor am terribly gratified that somebody actually knew the answer. And so the lecture moves on before, really, most of the students have even noticed that a question had been asked. Here, every single student has to engage with the material.
And of course these simple retrieval questions are not the end of the story. One needs to build in much more meaningful practice questions, and one also needs to provide the students with feedback on those questions. Now, how do you grade the work of 100,000 students if you do not have 10,000 TAs? The answer is, you need to use technology to do it for you. Now, fortunately, technology has come a long way, and we can now grade a range of interesting types of homework. In addition to multiple choice and the kinds of short answer questions that you saw in the video, we can also grade math, mathematical expressions as well as mathematical derivations. We can grade models, whether it's financial models in a business class or physical models in a science or engineering class and we can grade some pretty sophisticated programming assignments.
Let me show you one that's actually pretty simple but fairly visual. This is from Stanford's Computer Science 101 class, and the students are supposed to color-correct that blurry red image. They're typing their program into the browser, and you can see they didn't get it quite right, Lady Liberty is still seasick. And so, the student tries again, and now they got it right, and they're told that, and they can move on to the next assignment. This ability to interact actively with the material and be told when you're right or wrong is really essential to student learning.
Now, of course we can not yet grade the range of work that one needs for all courses. Specifically, what's lacking is the kind of critical thinking work that is so essential in such disciplines as the humanities, the social sciences, business and others. So we tried to convince, for example, some of our humanities faculty that multiple choice was not such a bad strategy. That didn't go over really well.
So we had to come up with a different solution. And the solution we ended up using is peer grading. It turns out that previous studies show, like this one by Saddler and Good, that peer grading is a surprisingly effective strategy for providing reproducible grades. It was tried only in small classes, but there it showed, for example, that these student-assigned grades on the y-axis are actually very well correlated with the teacher-assigned grade on the x-axis. What's even more surprising is that self-grades, where the students grade their own work critically -- so long as you incentivize them properly so they can't give themselves a perfect score -- are actually even better correlated with the teacher grades. And so this is an effective strategy that can be used for grading at scale, and is also a useful learning strategy for the students, because they actually learn from the experience. So we now have the largest peer-grading pipeline ever devised, where tens of thousands of students are grading each other's work, and quite successfully, I have to say.
But this is not just about students sitting alone in their living room working through problems. Around each one of our courses, a community of students had formed, a global community of people around a shared intellectual endeavor. What you see here is a self-generated map from students in our Princeton Sociology 101 course, where they have put themselves on a world map, and you can really see the global reach of this kind of effort.
Students collaborated in these courses in a variety of different ways. First of all, there was a question and answer forum, where students would pose questions, and other students would answer those questions. And the really amazing thing is, because there were so many students, it means that even if a student posed a question at 3 o'clock in the morning, somewhere around the world, there would be somebody who was awake and working on the same problem. And so, in many of our courses, the median response time for a question on the question and answer forum was 22 minutes. Which is not a level of service I have ever offered to my Stanford students.
(Laughter)
And you can see from the student testimonials that students actually find that because of this large online community, they got to interact with each other in many ways that were deeper than they did in the context of the physical classroom. Students also self-assembled, without any kind of intervention from us, into small study groups. Some of these were physical study groups along geographical constraints and met on a weekly basis to work through problem sets. This is the San Francisco study group, but there were ones all over the world. Others were virtual study groups, sometimes along language lines or along cultural lines, and on the bottom left there, you see our multicultural universal study group where people explicitly wanted to connect with people from other cultures.
There are some tremendous opportunities to be had from this kind of framework. The first is that it has the potential of giving us a completely unprecedented look into understanding human learning. Because the data that we can collect here is unique. You can collect every click, every homework submission, every forum post from tens of thousands of students. So you can turn the study of human learning from the hypothesis-driven mode to the data-driven mode, a transformation that, for example, has revolutionized biology. You can use these data to understand fundamental questions like, what are good learning strategies that are effective versus ones that are not? And in the context of particular courses, you can ask questions like, what are some of the misconceptions that are more common and how do we help students fix them?
So here's an example of that, also from Andrew's Machine Learning class. This is a distribution of wrong answers to one of Andrew's assignments. The answers happen to be pairs of numbers, so you can draw them on this two-dimensional plot. Each of the little crosses that you see is a different wrong answer. The big cross at the top left is where 2,000 students gave the exact same wrong answer. Now, if two students in a class of 100 give the same wrong answer, you would never notice. But when 2,000 students give the same wrong answer, it's kind of hard to miss. So Andrew and his students went in, looked at some of those assignments, understood the root cause of the misconception, and then they produced a targeted error message that would be provided to every student whose answer fell into that bucket, which means that students who made that same mistake would now get personalized feedback telling them how to fix their misconception much more effectively.
So this personalization is something that one can then build by having the virtue of large numbers. Personalization is perhaps one of the biggest opportunities here as well, because it provides us with the potential of solving a 30-year-old problem. Educational researcher Benjamin Bloom, in 1984, posed what's called the 2 sigma problem, which he observed by studying three populations. The first is the population that studied in a lecture-based classroom. The second is a population of students that studied using a standard lecture-based classroom, but with a mastery-based approach, so the students couldn't move on to the next topic before demonstrating mastery of the previous one. And finally, there was a population of students that were taught in a one-on-one instruction using a tutor. The mastery-based population was a full standard deviation, or sigma, in achievement scores better than the standard lecture-based class, and the individual tutoring gives you 2 sigma improvement in performance.
To understand what that means, let's look at the lecture-based classroom, and let's pick the median performance as a threshold. So in a lecture-based class, half the students are above that level and half are below. In the individual tutoring instruction,98 percent of the students are going to be above that threshold. Imagine if we could teach so that 98 percent of our students would be above average. Hence, the 2 sigma problem.
Because we can not afford, as a society, to provide every student with an individual human tutor. But maybe we can afford to provide each student with a computer or a smartphone. So the question is, how can we use technology to push from the left side of the graph, from the blue curve, to the right side with the green curve? Mastery is easy to achieve using a computer, because a computer doesn't get tired of showing you the same video five times. And it doesn't even get tired of grading the same work multiple times, we've seen that in many of the examples that I've shown you. And even personalization is something that we're starting to see the beginnings of, whether it's via the personalized trajectory through the curriculum or some of the personalized feedback that we've shown you. So the goal here is to try and push, and see how far we can get towards the green curve.
So, if this is so great, are universities now obsolete? Well, Mark Twain certainly thought so. He said that, "College is a place where a professor's lecture notes go straight to the students' lecture notes, without passing through the brains of either."
(Laughter)
I beg to differ with Mark Twain, though. I think what he was complaining about is not universities but rather the lecture-based format that so many universities spend so much time on. So let's go back even further, to Plutarch, who said that, "The mind is not a vessel that needs filling, but wood that needs igniting." And maybe we should spend less time at universities filling our students' minds with content by lecturing at them, and more time igniting their creativity, their imagination and their problem-solving skills by actually talking with them.
So how do we do that? We do that by doing active learning in the classroom. So there's been many studies, including this one, that show that if you use active learning, interacting with your students in the classroom, performance improves on every single metric -- on attendance, on engagement and on learning as measured by a standardized test. You can see, for example, that the achievement score almost doubles in this particular experiment. So maybe this is how we should spend our time at universities.
So to summarize, if we could offer a top quality education to everyone around the world for free, what would that do? Three things. First it would establish education as a fundamental human right, where anyone around the world with the ability and the motivation could get the skills that they need to make a better life for themselves, their families and their communities.
Second, it would enable lifelong learning. It's a shame that for so many people, learning stops when we finish high school or when we finish college. By having this amazing content be available, we would be able to learn something new every time we wanted, whether it's just to expand our minds or it's to change our lives.
And finally, this would enable a wave of innovation, because amazing talent can be found anywhere. Maybe the next Albert Einstein or the next Steve Jobs is living somewhere in a remote village in Africa. And if we could offer that person an education, they would be able to come up with the next big idea and make the world a better place for all of us.
Thank you very much.
(Applause)
皆さんの多くと同じように私は幸運に恵まれました 高い教育をみんな受けている家庭に生まれました 3代続きの博士で両親はともに学者です 子どもの頃は 大学にある父の研究室を遊び場にしていました だから いい大学に進むのも当然のことのように思っていました そしてそれが私に大きな可能性を与えてくれました
あいにくと世界の人の多くはそんな幸運に恵まれてはいません 場所によっては たとえば南アフリカなどでは 教育は容易に得られるものではありません 教育システムはアパルトヘイトの時代に 少数の白人向けに作られました その結果 優れた教育を受けることを望み それに値する人のための場所が 不足しています この希少性が 今年1月にヨハネスブルグ大学で起きた 事件に繋がりました 大学入試の受付が 一部追加で 行われることになったとき そのチャンスを掴むため 列の先頭になりたいと思った何千という人が 登録開始の前夜 門の外に何キロもの列を作りました 門が開いたとたん人々が殺到して 20人が怪我をし 1人の女性が亡くなりました 息子の人生に 少しでも 良いチャンスを与えたいと願った母親でした
教育の場に事欠かないアメリカのような場所でさえ みんなに行き渡っているわけではありません この何年か医療費の高騰が よく話題に上りますが あまり認識されていないのは 同じ時期に高等教育の費用が その2倍のペースで増え 1985年の5.6倍にもなっていることです このため 教育が今や多くの人の手が届かないものになっています
そして どうにか高等教育を受けることのできた人たちでさえ 機会が開かれているとは限りません 最近のアメリカの大学卒業生で それだけの教育を実際に必要とする仕事に 就いているのは半数強にすぎません トップレベルの大学の 卒業生を別にすると 多くの人が その時間と労力に見合った恩恵を 受けていないのです
トーマス・フリードマンが最近のニューヨークタイムズ紙のコラムで 私たちの活動の背後にある本質を彼ならではの鋭さで捉えています 「突如可能になったこととどうしても必要とされていたものが 出会ったとき 大きなブレークスルーは起きる」と彼は書きました どうしても必要とされていたものについてはお話ししましたので 次に もう一方の話をしましょう
突如可能になったことを明らかにしたのは スタンフォードの3つの人気講義でした それぞれを10万人以上が受講したのですこれを理解するために その講義の1つで私の同僚兼 共同創業者である アンドリュー・ンが受け持つ 授業を取り上げましょう 彼はスタンフォードでも人気の授業である 「機械学習」を教えています この授業は毎年400人が受講登録していますが それを一般の人に向けて教えることにしたら 10万人が登録したのです これがどれほど大きな数字かというと アンドリューが同じ数の学生を スタンフォードの教室で教えようと思ったら 250年教え続けなければならないのです きっと飽きてしまうでしょうね
この反響の大きさを目の当たりにしたとき アンドリューと私はこれをスケールアップして 最高のクオリティの教育を 可能な限り多くの人に届ける努力をすべきだと思いました それでCourseraを設立して 最高の大学の最高の講師陣による 最高の授業を世界のすべての人に 無償で提供することを目標に掲げました 現在4つの大学の多岐にわたる 43の授業を提供しています どんなものか少し ご覧いただきましょう
解析の授業にようこそ
保険を持たない人が5千万人いるのです
モデルは効果的な組織や政策を作る助けになります 信じがたい差別を受けているのです
ブッシュは 将来人々が額にカメラを 付けるようになると想像したのです
ミルズは その社会学の研究者に心の資質を開発してほしかったのです・・・
垂れ下がったケーブルの形は双曲線余弦関数になります
画像の各ピクセルについて赤を0に設定します
ワクチンはポリオウィルスの撲滅を可能にしました
“Does Lufthansa serve breakfast and San Jose?”と言うと変に聞こえますよね
どちらのコインを選ぶかということで2回コイン投げをします
大規模機械学習によって得たいのは計算的な・・・
(拍手)
当然のことだと思いますが 最高の大学の最高のコンテンツが ただで手に入ることを学生は歓迎します 2月にこのウェブサイトを開設して以来 190カ国から64万人が参加しています 受講登録数は150万 15の授業で600万の小テストの回答があり 1400万回ビデオが視聴されています
でも肝心なのは数ではなく 人間です インドの小さな村に住むアカシュには スタンフォードのようなクオリティの授業に 接する機会もお金も ありませんでした 2人の子どもを持つシングルマザーの ジェニーは能力を磨き 大学に戻って修士号を取りたいと思っています ライアンは大学に行くことができません 免疫不全の娘がいて 家に雑菌を持ち込むリスクのため 家を出られないのです 最近ライアンから連絡があり この話がハッピーエンドになったと聞いて とても喜んでいます 赤ちゃんのシャノンは左の子ですが 今ではずっと良くなり ライアンもCourseraで受けた授業を元に仕事を得ることができました
では Courseraの授業の何が特別なのでしょう? オンライン授業なら別に以前からありました 違っているのは これが本当の授業体験を与えることです 特定の日に始まり 学生は 毎週毎週ビデオを見て 宿題をします 本当の宿題で 本当の成績と 本当の締め切りがあります これは 締め切り日とサイト利用者数ですが グラフで突き出している部分は 先延ばしが世界的な現象であることを示しています
(笑)
授業の最後に学生は 修了証を受け取ります それを就職活動先に提示して より良い仕事を得ることもでき 既にそうしている人たちがいます この修了証を入学先の 学校に出して 単位として認めてもらっている 人もいます だから学生たちはかけた時間と 労力に対して 実のある結果を得ているのです
では授業の構成について 少し見ていきましょう 教室の物理的制約を離れ コンテンツを最初から オンライン向けにデザインするなら たとえば1時間単位の講義を バラしてしまうこともできます 1つのコンセプトを 8分から12分で説明する小さなユニットに 教材を分割することができます 学生は各々の背景知識や関心に応じて 違う順序で 教材を見ていくことができます 例えば ある学生には 他の学生が既に知っている前提知識を与える 準備的な教材が役に立つかもしれません あるいは自分で学んでいける 進んだ内容の教材に興味を持つ学生もいるかもしれません ですから この形式によって 全員に一律同じものを押しつける従来のモデルを打ち壊し 個人個人に合ったカリキュラムを組めるようになるのです
私たちは教育者ですから 黙ってビデオを見ているだけでは学べないことを知っています 私たちのアプローチにおける最大の要素は 学習内容を本当に理解するための 練習問題を課している ことかもしれません 練習問題の重要性は 多くの研究によって示されています たとえばこれは 去年の サイエンス誌に載った研究ですが 習ったことを単に繰り返すだけの 単純な復習問題が 他の学習方法よりも 試験結果を大きく向上させる ということが分かりました
復習問題や その他の練習問題を いろいろ組み込んでいます ビデオも単なるビデオではありません 数分ごとに止まって 学生に質問を投げかけるようになっています
この4つ プロスペクト理論双曲割引 現状のバイアス基準率の無視です いずれもよく知られた合理的行動からの逸脱です
ここでビデオが止まって 学生は回答欄に答えを書いて送信します (不正解 もう一度)どうも注意して聞いてなかったようです
(笑)
もう一度やって 今度は正解しました 必要なら補足説明を見ることもできます それから講義が先へと進みます これは私が教室で聞くような 簡単な質問ですが 教室での場合80%の学生は まだ私の言ったことを 書き取っている最中で 15%はFacebookに没頭しており 最前列にいる賢い学生が 他の人たちに 考える間も与えず答えてしまいます 教師としてはせめて誰か答えの 分かる人がいればそれでよしとします だから ほとんどの学生が質問されたことに 気付きもしないうちに授業は先に進んでしまいます でもCourseraではすべての学生が 質問に取り組むことになります
もちろんこの単純な復習問題が すべてではありません もっと突っ込んだ練習問題も必要で 学生にフィードバックを 与える必要もあります でも10万人の宿題を教育助手を1万人も使わずに どうやって採点したらいいのでしょう? 答えはテクノロジーを使う ということです 幸いテクノロジーの進歩によって 様々なタイプの宿題の採点ができるようになっています ご覧いただいたような 選択肢式の問題や答えの短い質問のほか 数式や微分の問題も 採点できます 様々なモデルも採点できます 経営の授業での金融モデルや 科学や工学の授業での物理モデル それに結構込み入ったプログラミング課題も採点できます
単純ですが視覚的な例を ご覧いただきましょう これはスタンフォード大の「コンピュータ科学入門」の 課題ですが 学生は赤いぼんやりした画像の 色を変えます ブラウザ上でプログラムを書いて 正しくないと 自由の女神が船酔いしたような画像になります もう一度トライして ちゃんと書けたらそれと分かり 次の課題へと進みます 能動的に課題に取り組み答えが正しいか 間違っているか分かるというのは 学習のために欠かせないことです
もちろん全ての授業の 全ての課題の採点ができるわけではありません 特に人文 社会科学 経営学などの 批判的思考力を見るような 課題の採点には適しません そこで選択式の出題方法も そんなに悪くはないと 人文の先生たちを説得してみましたが あまりうまくはいきませんでした
それで別な解決法を見つける必要がありました その解決法は 学生が互いを採点するというものです このサドラー&グッドのような 過去の研究結果から相互採点は 再現可能な採点結果が得られる 驚くほど効果的な方法だと分かりました 小規模でしか 試されていませんがここに出ているように y 軸の学生による採点は x 軸の教師による採点と 非常に高い相関を示しています さらに驚くのは自己採点結果で 学生に自分で採点させると? 自分に満点をつけたりしないよう適切に 動機付けする必要がありますが? 教師の採点と より高い相関を示すのです ですから これは大規模な採点に使える 効果的な戦略であり 学生にとっても有用な学習方法です 採点の体験から学ぶことができるからです 私たちは今や 史上最大の相互採点システムを持っており 何万人という学生が 互いの課題を採点し 極めて良い結果が得られています
学生たちはもっぱら自室で 1人問題に取り組むわけではありません それぞれの授業に 受講生の コミュニティができあがり 世界中の学生が 互いの成果を共有しています ご覧いただいているのは プリンストン大の「社会学入門」の学生の 所在を示した地図でCourseraがいかに広く 世界で利用されているか分かります
学生たちは様々な方法で互いに協力し合っています 第一に Q&Aフォーラムがあって 学生が何か質問を投げると 他の学生が答えます これが素晴らしいのは 学生の数が非常に多いため 質問が投げられたのが 明け方の3時だろうと 世界のどこかには 起きていて同じ問題に取り組んでいる 学生がいるということです そのため Courseraの Q&Aフォーラムにおける 質問への回答時間の中央値はたったの22分です そのようなレベルのサービスはスタンフォードではとても提供できません
(笑)
学生の声から分かるように このオンラインコミュニティの 規模のおかけで 学生の交流は 実際の教室におけるよりも 広く深いものになっています 学生たちはまた 教師の側からの働きかけなしに 小さな学習グループを自主的に作っています あるものは地域限定の学習グループで 毎週集まって 課題に取り組んでいます これはサンフランシスコのグループですが 同じようなものが世界中にあります 一方バーチャルな学習グループもあって 言語や文化によってまとまっているものもあれば 左下のもののような 他の文化圏の人との交流を望む ユニバーサルな多文化の 学習グループもあります
このようなフレームワークから得られる可能性には 膨大なものがあります 第一に人間の学習について かつてない洞察を得られる 可能性です ここで集められるデータは独特のものです 何万という学生によるあらゆるクリック あらゆる宿題の提出 あらゆるフォーラム投稿データを集められます 人間の学習の研究を 仮説駆動でなく データ駆動で行うことができます これは生物学に革命をもたらしたのと同じ変化です これらのデータを使って根本的な疑問に答えることができます 効果的な優れた学習戦略と そうでないものは何か? 個々の授業内容についても 学生がよくする勘違いに どんなものがありどうすれば避けられるか 考えることができます
これはアンドリューの 機械学習の授業の例ですが ある課題に対する 間違った答えの分布を示しています 答えが2つの数字の組み合わせだったので 二次元平面にプロットできました 小さな×印のそれぞれが間違った答えを表しています 左上の大きな×印では 2千人の学生が 同じ間違った答えをしています 100人の教室で2人の学生が 同じ間違いをしても 気付かないでしょうが 2千人が同じ間違いをすれば 見落としようがありません それでアンドリューと学生たちは このような課題を調べて 勘違いの原因を突き止めました そして学生が それと同じ間違いをしたときに エラーメッセージを 出すようにしました だから学生はこの勘違いに対して 専用のフィードバックを受け より効果的に 勘違いを解消できます
このようなパーソナライゼーションは 規模によって可能になったものです パーソナライゼーションは ここで一番大きな可能性かもしれません 30年来の問題を 解決できるかもしれないのですから 教育の研究者ベンジャミン・ブルームは 1984年に 2シグマ問題という問題を提起しました 3種類のグループの観察から見出されたものです 第一のグループは教室での講義で学習します 第二のグループも 通常の授業で学習しますが 習得度アプローチを使い 前の課題を習得しなければ 次の課題には進めません 三番目はチューターからの 個別指導で教わるグループです 習得度ベースのグループは 通常の講義ベースのグループよりも 得点が標準偏差(σ)の分だけ良くなり 個別指導のグループでは 成績が2σ良くなっています
どういうことかというと 講義ベースの場合の点数の 中央値を閾値としたとき講義ベースのグループでは 中央値を閾値としたとき講義ベースのグループでは 半数がそれより上半数がそれより下になりますが 個別指導のグループでは 98%がこの閾値よりも上になります 98%の学生が平均以上になる教育というのを 考えてみてください これが2σ問題です
社会として学生全員に 人間のチューターを割り当てることは 不可能ですが 学生全員にコンピュータやスマートフォンを 提供することならできるでしょう 問題はテクノロジーによって 左の青い曲線を右の緑の曲線に どこまで近づけられるかということです 習得度ベースの学習は コンピュータで容易に実現できます コンピュータは 同じビデオを5回繰り返すのを厭いません 同じ問題を 繰り返し採点するのも厭いません それはご覧いただいた例の通りです パーソナライゼーションもまた 可能になり始めています ご覧いただいたようなパーソナライズされたカリキュラムや パーソナライズされたフィードバックを提供することができます ここでのゴールは 緑の曲線に向かって どこまで押し進められるかということです
これがそんなに素晴らしいものなら大学は陳腐化するのでしょうか? マーク・トウェインは確かにそう考えていました 彼はこう言っています「大学というのは 教授の講義ノートが 学生の講義ノートへと両者の頭脳を介さずに変換される場所である」 教授の講義ノートが 学生の講義ノートへと両者の頭脳を介さずに変換される場所である」
(笑)
私はマーク・トウェインに異を唱えたいと思います 彼が難じているのは大学というよりは 多くの大学が多大な時間を費やしている 講義ベースの形式です さらに遡ってプルタルコスはこう言っています 「心というのは 満たすべき容れ物ではなく 焚き付けるべき木のようなものである」 大学は学生の頭に講義内容を 詰め込もうとするのではなく 実際の対話を通じて彼らのクリエイティビティや 想像力や問題解決能力を焚き付けることに もっと時間を費やすべきでしょう
どうしたら そうできるのでしょう? 教室での能動的学習です ここに挙げたものをはじめ沢山の研究があるのですが 能動的学習を使い 教室で学生との交流を持つと あらゆる指標で結果が改善されます 出席率 参加の度合い 標準テストで評価した学習度 ご覧のように この実験で 達成度のスコアはほとんど倍になっています これが大学で時間をかけるべきことなのかもしれません
まとめになりますが最高の教育を 世界中の人に無償で提供できたなら 何が起きるでしょう?3つあります 第一に教育が 基本的人権として確立されるでしょう 動機と能力を持った 世界中の誰もが 自分や家族やコミュニティに より良い生活をもたらすために 必要なスキルを手にできる権利です
第二に 生涯学習が可能になるでしょう 多くの人が 高校や大学を卒業したときに 学びやめてしまうのは残念なことです 素晴らしい学習コンテンツが 提供されることで望むときにはいつでも 新しいことを学び 視野を広げたり 生活を変えることができます
そして最後に 新たなイノベーションの波を生み出すでしょう ものすごい才能を持った人がどこにいるか分かりません 明日のアインシュタインや明日のスティーブ・ジョブズは アフリカの僻地の村にいるかもしれません その人たちに教育を提供できたなら 彼らは次の大いなるアイデアを生み出し すべての人のため 世界をより良い場所に変えてくれることでしょう
どうもありがとうございました
(拍手)
品詞分類
- 主語
- 動詞
- 助動詞
- 準動詞
- 関係詞等
TED 日本語
TED Talks
関連動画
漫画は教室にふさわしい | TED Talkジーン・ヤン
2018.06.15公的資金による学術研究の成果を自由に見られないのはなぜか?エリカ・ストーン
2018.04.19子ども達が生涯の読書家になるためにアルヴィン・アービー
2018.04.04スクリーンと向き合う子供達に対する3つの不安 ― 何故それが真実ではないのかサラ・デウィット
2017.10.19学生が障壁を乗り越えるのに必要なことアニンディヤ・クンドゥ
2017.10.11子どもたちが本当に通いたくなるサマースクールをカリーム・アブルナガ
2017.05.29教育システムから取り残された子供たちを助けようヴィクター・リオス
2016.12.12青少年向けの簡単なDIY課題の作り方フォーン・チョウ
2016.12.02更なる資金なしで崩壊した教育制度を立て直す方法シーマ・バンスール
2016.07.20学生ローンは、どのように学生を搾取しているかサジェイ・サミュエル
2016.07.02仮想ラボが科学の授業を変える!マイケル・ボデカー
2016.06.01子供に楽しくコンピューターを教えるにはリンダ・リウカス
2016.02.23科学好きの子供を作るには原田セザール実
2015.11.18荒れた学校を立て直すには ― 取り組みの先頭に立ち、全力で愛するリンダ・クリアット=ウェイマン
おすすめ 22015.06.05超・低コストでとれる大学の学位シャイ・レシェフ
2014.08.04オープン・オンラインコースが今なお重要な意味をもつ訳はアナン・アガワル
2014.01.27
洋楽 おすすめ
RECOMMENDS
洋楽歌詞
ステイザ・キッド・ラロイ、ジャスティン・ビーバー
洋楽最新ヒット2021.08.20スピーチレス~心の声ナオミ・スコット
洋楽最新ヒット2019.05.23シェイプ・オブ・ユーエド・シーラン
洋楽人気動画2017.01.30フェイデッドアラン・ウォーカー
洋楽人気動画2015.12.03ウェイティング・フォー・ラヴアヴィーチー
洋楽人気動画2015.06.26シー・ユー・アゲインウィズ・カリファ
洋楽人気動画2015.04.06シュガーマルーン5
洋楽人気動画2015.01.14シェイク・イット・オフテイラー・スウィフト
ポップス2014.08.18オール・アバウト・ザット・ベースメーガン・トレイナー
ポップス2014.06.11ストーリー・オブ・マイ・ライフワン・ダイレクション
洋楽人気動画2013.11.03コール・ミー・メイビーカーリー・レイ・ジェプセン
洋楽人気動画2012.03.01美しき生命コールドプレイ
洋楽人気動画2008.08.04バッド・デイ~ついてない日の応援歌ダニエル・パウター
洋楽人気動画2008.05.14サウザンド・マイルズヴァネッサ・カールトン
洋楽人気動画2008.02.19イッツ・マイ・ライフボン・ジョヴィ
ロック2007.10.11アイ・ウォント・イット・ザット・ウェイバックストリート・ボーイズ
洋楽人気動画2007.09.14マイ・ハート・ウィル・ゴー・オンセリーヌ・ディオン
洋楽人気動画2007.07.12ヒーローマライア・キャリー
洋楽人気動画2007.03.21オールウェイズ・ラヴ・ユーホイットニー・ヒューストン
洋楽人気動画2007.02.19オネスティビリー・ジョエル
洋楽人気動画2005.09.16