TED日本語 - ダフネ・バヴェリア: 脳とビデオゲーム


TED Talks(英語 日本語字幕付き動画)

TED日本語 - ダフネ・バヴェリア: 脳とビデオゲーム

TED Talks


Your brain on video games


Daphne Bavelier


迅速さを必要とするビデオゲームは脳にどんな影響を与えるか? 認知科学者ダフネ・バヴェリアの研究室に行ってみましょう。ビデオゲーム、それもアクション系の射撃ゲームでさえ、我々の学習能力、集中力、それにマルチタスク能力を高めることができるという驚くべき発見を披露してくれます。(TEDxCHUVにて収録)




I'm a brain scientist, and as a brain scientist, I'm actually interested in how the brain learns, and I'm especially interested in a possibility of making our brains smarter, better and faster.

This is in this context I'm going to tell you about video games. When we say video games, most of you think about children. It's true. Ninety percent of children do play video games. But let's be frank. When the kids are in bed, who is in front of the PlayStation? Most of you. The average age of a gamer is 33 years old, not eight years old, and in fact, if we look at the projected demographics of video game play, the video game players of tomorrow are older adults. (Laughter)

So video [ gaming ] is pervasive throughout our society. It is clearly here to stay. It has an amazing impact on our everyday life. Consider these statistics released by Activision. After one month of release of the game "Call Of Duty: Black Ops," it had been played for 68,000 years worldwide, right? Would any of you complain if this was the case about doing linear algebra?

So what we are asking in the lab is, how can we leverage that power? Now I want to step back a bit. I know most of you have had the experience of coming back home and finding your kids playing these kinds of games. (Shooting noises) The name of the game is to get after your enemy zombie bad guys before they get to you, right? And I'm almost sure most of you have thought, "Oh, come on, can't you do something more intelligent than shooting at zombies?" I'd like you to put this kind of knee-jerk reaction in the context of what you would have thought if you had found your girl playing sudoku or your boy reading Shakespeare. Right? Most parents would find that great. Well, I'm not going to tell you that playing video games days in and days out is actually good for your health. It's not, and binging is never good. But I'm going to argue that in reasonable doses, actually the very game I showed you at the beginning, those action-packed shooter games have quite powerful effects and positive effects on many different aspects of our behavior.

There's not one week that goes without some major headlines in the media about whether video games are good or bad for you, right? You're all bombarded with that. I'd like to put this kind of Friday night bar discussion aside and get you to actually step into the lab. What we do in the lab is actually measure directly, in a quantitative fashion, what is the impact of video games on the brain. And so I'm going to take a few examples from our work.

One first saying that I'm sure you all have heard is the fact that too much screen time makes your eyesight worse. That's a statement about vision. There may be vision scientists among you. We actually know how to test that statement. We can step into the lab and measure how good your vision is. Well, guess what? People that don't play a lot of action games, that don't actually spend a lot of time in front of screens, have normal, or what we call corrective-to-normal vision. That's okay. The issue is what happens with these guys that actually indulge into playing video games like five hours per week,10 hours per week,15 hours per week. By that statement, their vision should be really bad, right? Guess what? Their vision is really, really good. It's better than those that don't play. And it's better in two different ways. The first way is that they're actually able to resolve small detail in the context of clutter, and though that means being able to read the fine print on a prescription rather than using magnifier glasses, you can actually do it with just your eyesight. The other way that they are better is actually being able to resolve different levels of gray. Imagine you're driving in a fog. That makes a difference between seeing the car in front of you and avoiding the accident, or getting into an accident. So we're actually leveraging that work to develop games for patients with low vision, and to have an impact on retraining their brain to see better. Clearly, when it comes to action video games, screen time doesn't make your eyesight worse.

Another saying that I'm sure you have all heard around: Video games lead to attention problems and greater distractability. Okay, we know how to measure attention in the lab. I'm actually going to give you an example of how we do so. I'm going to ask you to participate, so you're going to have to actually play the game with me. I'm going to show you colored words. I want you to shout out the color of the ink. Right? So this is the first example. [ "Chair" ] Orange, good. [ "Table" ] Green. [ "Board" ] Audience: Red.Daphne Bavelier: Red. [ "Horse" ] DB: Yellow. Audience: Yellow. [ "Yellow" ] DB: Red. Audience: Yellow. [ "Blue" ] DB: Yellow. Okay, you get my point, right? (Laughter) You're getting better, but it's hard. Why is it hard? Because I introduced a conflict between the word itself and its color. How good your attention is determines actually how fast you resolve that conflict, so the young guys here at the top of their game probably, like, did a little better than some of us that are older. What we can show is that when you do this kind of task with people that play a lot of action games, they actually resolve the conflict faster. So clearly playing those action games doesn't lead to attention problems.

Actually, those action video game players have many other advantages in terms of attention, and one aspect of attention which is also improved for the better is our ability to track objects around in the world. This is something we use all the time. When you're driving, you're tracking, keeping track of the cars around you. You're also keeping track of the pedestrian, the running dog, and that's how you can actually be safe driving, right?

In the lab, we get people to come to the lab, sit in front of a computer screen, and we give them little tasks that I'm going to get you to do again. You're going to see yellow happy faces and a few sad blue faces. These are children in the schoolyard in Geneva during a recess during the winter. Most kids are happy. It's actually recess. But a few kids are sad and blue because they've forgotten their coat. Everybody begins to move around, and your task is to keep track of who had a coat at the beginning and who didn't. So I'm just going to show you an example where there is only one sad kid. It's easy because you can actually track it with your eyes. You can track, you can track, and then when it stops, and there is a question mark, and I ask you, did this kid have a coat or not? Was it yellow initially or blue? I hear a few yellow. Good. So most of you have a brain. (Laughter) I'm now going to ask you to do the task, but now with a little more challenging task. There are going to be three of them that are blue. Don't move your eyes. Please don't move your eyes. Keep your eyes fixated and expand, pull your attention. That's the only way you can actually do it. If you move your eyes, you're doomed. Yellow or blue? Audience: Yellow.DB: Good. So your typical normal young adult can have a span of about three or four objects of attention. That's what we just did. Your action video game player has a span of about six to seven objects of attention, which is what is shown in this video here. That's for you guys, action video game players. A bit more challenging, right? (Laughter) Yellow or blue? Blue. We have some people that are serious out there. Yeah. (Laughter)

Good. So in the same way that we actually see the effects of video games on people's behavior, we can use brain imaging and look at the impact of video games on the brain, and we do find many changes, but the main changes are actually to the brain networks that control attention. So one part is the parietal cortex which is very well known to control the orientation of attention. The other one is the frontal lobe, which controls how we sustain attention, and another one is the anterior cingulate, which controls how we allocate and regulate attention and resolve conflict. Now, when we do brain imaging, we find that all three of these networks are actually much more efficient in people that play action games.

This actually leads me to a rather counterintuitive finding in the literature about technology and the brain. You all know about multitasking. You all have been faulty of multitasking when you're driving and you pick up your cellphone. Bad idea. Very bad idea. Why? Because as your attention shifts to your cell phone, you are actually losing the capacity to react swiftly to the car braking in front of you, and so you're much more likely to get engaged into a car accident. Now, we can measure that kind of skills in the lab. We obviously don't ask people to drive around and see how many car accidents they have. That would be a little costly proposition. But we design tasks on the computer where we can measure, to millisecond accuracy, how good they are at switching from one task to another. When we do that, we actually find that people that play a lot of action games are really, really good. They switch really fast, very swiftly. They pay a very small cost.

Now I'd like you to remember that result, and put it in the context of another group of technology users, a group which is actually much revered by society, which are people that engage in multimedia-tasking. What is multimedia-tasking? It's the fact that most of us, most of our children, are engaged with listening to music at the same time as they're doing search on the web at the same time as they're chatting on Facebook with their friends. That's a multimedia-tasker. There was a first study done by colleagues at Stanford and that we replicated that showed that those people that identify as being high multimedia-taskers are absolutely abysmal at multitasking. When we measure them in the lab, they're really bad.

Right? So these kinds of results really makes two main points. The first one is that not all media are created equal. You can't compare the effect of multimedia-tasking and the effect of playing action games. They have totally different effects on different aspects of cognition, perception and attention. Even within video games, I'm telling you right now about these action-packed video games. Different video games have a different effect on your brains. So we actually need to step into the lab and really measure what is the effect of each video game.

The other lesson is that general wisdom carries no weight. I showed that to you already, like we looked at the fact that despite a lot of screen time, those action gamers have a lot of very good vision, etc. Here, what was really striking is that these undergraduates that actually report engaging in a lot of high multimedia-tasking are convinced they aced the test. So you show them their data, you show them they are bad and they're like, "Not possible." You know, they have this sort of gut feeling that, really, they are doing really, really good. That's another argument for why we need to step into the lab and really measure the impact of technology on the brain.

Now in a sense, when we think about the effect of video games on the brain, it's very similar to the effect of wine on the health. There are some very poor uses of wine. There are some very poor uses of video games. But when consumed in reasonable doses, and at the right age, wine can be very good for health. There are actually specific molecules that have been identified in red wine as leading to greater life expectancy. So it's the same way, like those action video games have a number of ingredients that are actually really powerful for brain plasticity, learning, attention, vision, etc., and so we need and we're working on understanding what are those active ingredients so that we can really then leverage them to deliver better games, either for education or for rehabilitation of patients.

Now because we are interested in having an impact for education or rehabilitation of patients, we are actually not that interested in how those of you that choose to play video games for many hours on end perform. I'm much more interested in taking any of you and showing that by forcing you to play an action game, I can actually change your vision for the better, whether you want to play that action game or not, right? That's the point of rehabilitation or education. Most of the kids don't go to school saying, "Great,two hours of math!"

So that's really the crux of the research, and to do that, we need to go one more step. And one more step is to do training studies. So let me illustrate that step with a task which is called mental rotation. Mental rotation is a task where I'm going to ask you, and again you're going to do the task, to look at this shape. Study it, it's a target shape, and I'm going to present to you four different shapes. One of these four different shapes is actually a rotated version of this shape. I want you to tell me which one: the first one, second one, third one or fourth one? Okay, I'll help you. Fourth one. One more. Get those brains working. Come on. That's our target shape. Third. Good! This is hard, right? Like, the reason that I asked you to do that is because you really feel your brain cringing, right? It doesn't really feel like playing mindless action video games.

Well, what we do in these training studies is, people come to the lab, they do tasks like this one, we then force them to play 10 hours of action games. They don't play 10 hours of action games in a row. They do distributed practice, so little shots of 40 minutes several days over a period of two weeks. Then, once they are done with the training, they come back a few days later and they are tested again on a similar type of mental rotation task. So this is work from a colleague in Toronto. What they showed is that, initially, you know, subjects perform where they are expected to perform given their age. After two weeks of training on action video games, they actually perform better, and the improvement is still there five months after having done the training. That's really, really important. Why? Because I told you we want to use these games for education or for rehabilitation. We need to have effects that are going to be long-lasting.

Now, at this point, a number of you are probably wondering well, what are you waiting for, to put on the market a game that would be good for the attention of my grandmother and that she would actually enjoy, or a game that would be great to rehabilitate the vision of my grandson who has amblyopia, for example?

Well, we're working on it, but here is a challenge. There are brain scientists like me that are beginning to understand what are the good ingredients in games to promote positive effects, and that's what I'm going to call the broccoli side of the equation. There is an entertainment software industry which is extremely deft at coming up with appealing products that you can't resist. That's the chocolate side of the equation. The issue is we need to put the two together, and it's a little bit like with food. Who really wants to eat chocolate-covered broccoli? None of you. (Laughter) And you probably have had that feeling, right, picking up an education game and sort of feeling, hmm, you know, it's not really fun, it's not really engaging. So what we need is really a new brand of chocolate, a brand of chocolate that is irresistible, that you really want to play, but that has all the ingredients, the good ingredients that are extracted from the broccoli that you can't recognize but are still working on your brains. And we're working on it, but it takes brain scientists to come and to get together, people that work in the entertainment software industry, and publishers, so these are not people that usually meet every day, but it's actually doable, and we are on the right track. I'd like to leave you with that thought, and thank you for your attention. (Applause) (Applause)

私は脳科学者ですそして脳科学者として 実際にどのように脳が学習するのか 脳がより賢く より良くより早く働く可能性に 特に興味があります

この観点からゲームについてお話しします ビデオゲームというと ほとんどの人が子供達を思い浮かべます 実際に90%の子供がビデオゲームで遊びます でも 正直言って 子供達が寝た後プレイステーションの前に座っているのは誰でしょう? 皆様のほとんどですプレイヤーの平均年齢は 8歳ではなく 33歳なのです さらにプレイヤー層から考えれば 未来のプレイヤーは 高齢者なのです (笑)

ビデオゲームは社会にすっかり普及しました ゲームは確かに社会に定着し 我々の日常に強烈なインパクトを与えています アクティビジョン社によるこの統計を見てください 「コール オブ デューティー:ブラックオプス」の発売後1ヵ月間の 世界中あわせての合計プレイ時間は 6万8千年に及びます これが 線形代数の勉強に使った時間なら 文句を言う人もいないでしょう

そこで我々はこのパワーの活用法を研究しています 少し話を戻しましょう 家に帰ったら お子さんがゲームで遊んでいた という経験が皆さんにもおありでしょう 悪者のゾンビを撃って やっつけるゲームです わかりますね? 皆さんはこう考えるでしょう 「ああ何だってゾンビをやっつけるより もう少しましなことができないの?」 さて一方で もし お嬢さんが数独をしていたり 息子さんがシェークスピアを読んでいたら どんなふうに反応しますか? ほとんどの方は素晴らしいと思うでしょう なにも毎日ビデオゲームに明け暮れるのが 健康に良いとは言っていません 何事もやりすぎは禁物です しかし適度であれば 最初にお見せしたような アクション射撃ゲームも いろいろな場面で ちょっとした役に立つのです

ビデオゲームの影響の良し悪しが 毎週のように 主要メディアに とりあげられています休みなしにです このような とりとめのない討論はさておき 実際に研究室をのぞいてみましょう 我々が研究室でしていることは ビデオゲームがどう脳に影響するか 定量的に計測することです いくつかの例をお見せします

まず最初に ゲームの画面を長時間見ていると視力が落ちる と聞いたことがあると思います 視覚の問題です 皆さんの中にも視覚の専門家がいるでしょう 真偽を確かめるのは簡単です 視力を測ればいいだけです さて結果はどうでしょう? アクションゲームをプレイしない人 つまり画面をあまり見ない人は 視力が通常でした 当然です さてビデオゲームに漬かっている人 1週間に何時間もプレイしている人はどうでしょう 彼らの視力はかなり悪いはずです ところが 彼らの視力はとても良かったのです ゲームをしない人より良かったんです 優れていた点は2点です ひとつは雑多なものの中でも 細部を見分ける力 つまり 細かい文字を読むとき 虫眼鏡を使わなくても裸眼で読めるということです もうひとつの優れた点は 灰色の濃淡を見分けられることです 霧の中で車を運転しているとしましょう 前の車が見分けられるかどうかで 事故にあう確率が変わります この実験を基に 私たちはゲームを開発しています 視覚に問題のある人が頭脳を再訓練して 視覚を改善するためのゲームです アクションゲームに関して言えば 画面を長時間見ても視力は低下しないのです

もう一つ 俗説を紹介します 「ビデオゲームは集中力を弱め注意力を散漫にする」 さあ研究室では注意力も測れます テストの方法をご紹介するために 実際にテストをやって見ましょう 皆さん一緒に参加してください 色のついた単語が現れるので文字の色を言ってください 用意はいいですか?最初の例です 「椅子」 オレンジですね「テーブル」緑 「黒板」 赤 「馬」 黄色 「黄色」 赤 「青」 黄色 何が起こっているか分かりましたね(笑) なぜこのテストは難しいのでしょう? 言葉とその色自体が 矛盾しているからです 集中力の良し悪しは 矛盾を解消する早さで決まります だから若い人は年配の人より 良い成績が出せます このようなテストをしたとき頻繁にゲームをしている人は 良い成績を出せるのです つまりアクションゲームをプレイしても 注意力に問題は生じないのです

むしろ ゲームプレーヤーは 集中力の面で言えば優れています 注意力の一要素である 周囲の状況を把握する能力に優れているのです この力は日常よく使われるものです 例えば車を運転するときです周囲の車や 歩行者や犬の位置を把握していることで 安全運転が出来るわけです

研究室に来た人たちにはコンピューターの前に座ってもらいます 研究室に来た 人たちにはコンピューターの前に座ってもらいます 皆さんにもやっていただきましょう 黄色い幸福そうな顔と 青い悲しそうな顔をお見せします 冬のジュネーブの子供たちの顔です ほとんどの子供たちは幸せそうです休み時間ですからね 悲しそうな子もいますコートを忘れたからです 子供たちが動き始めますので 誰が始めにコートを着ていたか着ていなかったか 見失わないで下さいちょっとやってみましょう 悲しそうな子は一人だけなら実際に眼で追えるので これは簡単です 映像が止まって はてなマークが付きました この子はコートを着ていましたか? 最初は黄色でしたか 青でしたか? 黄色という声が聞こえました皆さん大丈夫です(笑) では皆さんに挑戦してもらいますが 今度はもう少し難しくします 青い子が3人になります 目を動かさないで 注意を払う範囲を広げてください 視線を動かしたらダメですよ 黄色ですか 青ですか? 聴衆:黄色ダフネ: いいでしょう 普通の若者は 3~4つのものに注意を向けられます 私たちが今やったようにね アクション・ゲームプレーヤーは注意を 6つ7つに向けられます では アクション・ゲームをする方やってみましょう ちょっと難しいでしょう?(笑) 黄色ですか 青ですか? 青真剣になってる人がいますね(笑)

さて 私たちはゲームが プレイヤーの行動にどう影響するかだけではなく 脳のイメージングで脳自体への影響も研究しました その結果 脳の様々な変化を発見しました 最も変化のあったのが注意力を司るネットワークでした 一つ目は頭頂葉皮質 注意力の向きを制御する部分です 二つ目はは前頭葉 注意力を維持する部分です 三つ目は前帯状皮質 注意力を制御し 矛盾を解決するところです 脳画像を研究した結果 アクションゲームで遊ぶ人はこの3つ全てのネットワークの 効率の良い事がわかりました

ここからテクノロジーと頭脳に関する文献に行き着き 直感に反する事実を発見しました マルチタスクとよく言いますが 運転中に携帯を使っていたら それは大きな間違いです なぜか?それは注意力が電話に向くからです 目の前の車がブレーキをかけても すばやく反応できなくなり 事故に遭いやすくなるわけです この能力も研究室で測ってみました といっても 実際に事故に遭ってもらうわけにはいきません そこで精密なコンピューターを使って 一つの作業から別の作業に どれだけ早く移れるかテストしました 結果 アクションゲームでよく遊ぶ人は 成績が非常に良かったのです 彼らはほんの少しの労力ですばやく作業を変更していました

この結果を念頭におき テクノロジーを使いこなす他のグループで考えて見ましょう 社会でも非常に尊敬されている マルチメディア・タスキングをしている人たちです マルチメディア・タスキングとは何か? 私たちや子供たちのほとんどは ウェブで検索をしながら 音楽を聴き 同時にフェイスブックで友達とチャットをしています これがマルチメディア・タスキングです スタンフォード大の同僚の研究と 私たちが行った追実験の結果 マルチメディア・タスカーを自認する人でも マルチタスクが 全然できていないとわかりました テストの成績が悪かったのです

どうです? これらの研究の重要なポイントは2つです 一つ 「全てのメディアを同一視はできない」 マルチメディア・タスキングの影響と アクションゲームの影響は別物です 認知 知覚 注意力等の様々な側面で 全く違う影響を及ぼすのです 今私がここで話している アクションゲームでも違います 異なるビデオゲームは脳に異なる影響を与えます だから一つ一つの ゲームの影響を 実際に計測する必要があるのです

もう一つの教訓は 「俗説はあてにならない」です 先ほどご説明したように アクション・ゲーマーの様に 画面を見続けても視力は良いとか いろいろです 面白いのはマルチメディア・タスキングを よく実践しているという学生たちが 実験で満点近い成績だったと思い込んでいることです 結果のデータを見せると 「そんなはずはない」と言います 直感的に すごくうまくやったと思っていたのです 研究室で実際に計測をする必要があるのは この思い込みも一つの要因です

ビデオゲームが脳に及ぼす影響は ワインが健康に及ぼす影響と よく似ています ワインの飲みすぎはよくありません ゲームのやりすぎもいけません しかし成人が適量を飲むならば ワインは健康にいいのです 赤ワインには寿命を延ばすとされる 物質が含まれることがわかっています それと同じように アクションビデオゲームも 脳の柔軟性 学習能力 注意力や 視力を向上させる要素を持っています その要素が何なのか分かれば 教育やリハビリのために ゲームを活用できます

でも 私たちの研究は教育やリハビリに対する影響で ビデオゲームで長時間遊ぶ方々の 能力については あまり興味はないのです 誰を選んでもアクションゲームをプレイさせれば 視力を向上させられるということを 証明するのに関心があるのです 実際にゲームをプレイしたいかは 無関係です リハビリや教育は そういうものです 「やった 今日は数学2時間もやれる!」 なんて 学校にいく子どもは普通 いません

これが 研究の核心となるポイントで 研究を深める必要がありました そこで「訓練研究」を行いました 心的回転というテストを例に お見せしましょう 皆さんも実際にやってみてください この形をよく見てください これが問題の形です 次に4つの違った形をお見せします 4つのうちのひとつは 問題の形を回転させたものです どれかわかりますか? 正解は4つ目です もう一問頭を働かせてください これが元の形 答えは3番目難しいでしょう? どうですか 頭を使ってる感じがしましたか? 頭を使わないアクションゲームとは違いましたよね

さて 訓練研究では 先ほどのような テストの後に 10時間のアクションゲームを強制します 連続してプレイするのではありません 40分ずつに分けて 2週間の間に 少しずつこなしてもらいます 2週間後に研究室で 同様のテストをしてもらいます これはトロントにいる私の同僚の研究です 最初のテストの結果は 年齢に見合ったものでした 2週間のゲームプレイの後は 成績が上がりました しかも5ヵ月後に測っても成績は良いままでした これはとても重要です なぜなら ゲームを 教育やリハビリに使うためには 効果が持続する必要があるからです

このような結果を見て社会に役立つゲームを 早く作れないものかと思う人もいるかもしれません お婆さんが楽しみながら 注意力を高めたり 弱視の子供のリハビリに 役立ったりするゲームです

しかしまだ課題があります 私のような脳科学者には ゲームの役立つ要素とは何かが わかり始めましたこれが この課題を解くための 「ブロッコリー」の要素です 一方 娯楽ソフトウェア業界は すぐに手に入れたくなるような 魅力的な商品を発売するのに長けています これが課題の「チョコ」の要素です この2つの全く相容れないものを一緒に出来るか この問題は食べ物と似ています チョコに包まれたブロッコリーを食べたい人なんているでしょうか?(笑) いませんね(笑) ゲームにも同じことが言えます 教育に役立つゲームは いまひとつ おもしろくないので いま求められているのは 食べずにはいられない新しいタイプのチョコで ブロッコリーの栄養分だけが 密かに添加され脳に良い影響を与える そんなチョコレートを開発しています 脳科学者やゲーム業界の人 ソフトの出版社と協力して 研究を進める必要があります 珍しい組み合わせかも知れませんが 可能性があり正しいやり方で進んでいると 分かって頂けたらと思います 皆様のご拝聴に感謝いたします(拍手) (拍手)

― もっと見る ―
― 折りたたむ ―


  • 主語
  • 動詞
  • 助動詞
  • 準動詞
  • 関係詞等

TED 日本語

TED Talks


洋楽 おすすめ