TED日本語 - ショヒーニ・ゴーシュ: 10分で分かる量子コンピュータ


TED Talks(英語 日本語字幕付き動画)

TED日本語 - ショヒーニ・ゴーシュ: 10分で分かる量子コンピュータ

TED Talks


A beginner's guide to quantum computing


Shohini Ghose




Let's play a game. Imagine that you are in Las Vegas, in a casino, and you decide to play a game on one of the casino's computers, just like you might play solitaire or chess. The computer can make moves in the game, just like a human player. This is a coin game. It starts with a coin showing heads, and the computer will play first. It can choose to flip the coin or not, but you don't get to see the outcome. Next, it's your turn. You can also choose to flip the coin or not, and your move will not be revealed to your opponent, the computer. Finally, the computer plays again, and can flip the coin or not, and after these three rounds, the coin is revealed, and if it is heads, the computer wins, if it's tails, you win.

So it's a pretty simple game, and if everybody plays honestly, and the coin is fair, then you have a 50 percent chance of winning this game. And to confirm that, I asked my students to play this game on our computers, and after many, many tries, their winning rate ended up being 50 percent, or close to 50 percent, as expected. Sounds like a boring game, right?

But what if you could play this game on a quantum computer? Now, Las Vegas casinos do not have quantum computers, as far as I know, but IBM has built a working quantum computer. Here it is.

But what is a quantum computer? Well, quantum physics describes the behavior of atoms and fundamental particles, like electrons and photons. So a quantum computer operates by controlling the behavior of these particles, but in a way that is completely different from our regular computers. So a quantum computer is not just a more powerful version of our current computers, just like a light bulb is not a more powerful candle. You can not build a light bulb by building better and better candles. A light bulb is a different technology, based on deeper scientific understanding. Similarly, a quantum computer is a new kind of device, based on the science of quantum physics, and just like a light bulb transformed society, quantum computers have the potential to impact so many aspects of our lives, including our security needs, our health care and even the internet.

So companies all around the world are working to build these devices, and to see what the excitement is all about, let's play our game on a quantum computer. So I can log into IBM's quantum computer from right here, which means I can play the game remotely, and so can you. To make this happen, you may remember getting an email ahead of time, from TED, asking you whether you would choose to flip the coin or not, if you played the game. Well, actually, we asked you to choose between a circle or a square. You didn't know it, but your choice of circle meant "flip the coin," and your choice of square was "don't flip." We received 372 responses. Thank you. That means we can play 372 games against the quantum computer using your choices. And it's a pretty fast game to play, so I can show you the results right here.

Unfortunately, you didn't do very well.


The quantum computer won almost every game. It lost a few only because of operational errors in the computer.


So how did it achieve this amazing winning streak? It seems like magic or cheating, but actually, it's just quantum physics in action. Here's how it works. A regular computer simulates heads or tails of a coin as a bit, a zero or a one, or a current flipping on and off inside your computer chip. A quantum computer is completely different. A quantum bit has a more fluid, nonbinary identity. It can exist in a superposition, or a combination of zero and one, with some probability of being zero and some probability of being one. In other words, its identity is on a spectrum. For example, it could have a 70 percent chance of being zero and a 30 percent chance of being one or 80-20 or 60-40. The possibilities are endless. The key idea here is that we have to give up on precise values of zero and one and allow for some uncertainty. So during the game, the quantum computer creates this fluid combination of heads and tails,zero and one, so that no matter what the player does, flip or no flip, the superposition remains intact. It's kind of like stirring a mixture of two fluids. Whether or not you stir, the fluids remain in a mixture, but in its final move, the quantum computer can unmix the zero and one, perfectly recovering heads so that you lose every time.


If you think this is all a bit weird, you are absolutely right. Regular coins do not exist in combinations of heads and tails. We do not experience this fluid quantum reality in our everyday lives. So if you are confused by quantum, don't worry, you're getting it.


But even though we don't experience quantum strangeness, we can see its very real effects in action. You've seen the data for yourself. The quantum computer won because it harnessed superposition and uncertainty, and these quantum properties are powerful, not just to win coin games, but also to build future quantum technologies. So let me give you three examples of potential applications that could change our lives.

First of all, quantum uncertainty could be used to create private keys for encrypting messages sent from one location to another so that hackers could not secretly copy the key perfectly, because of quantum uncertainty. They would have to break the laws of quantum physics to hack the key. So this kind of unbreakable encryption is already being tested by banks and other institutions worldwide. Today, we use more than 17 billion connected devices globally. Just imagine the impact quantum encryption could have in the future.

Secondly, quantum technologies could also transform health care and medicine. For example, the design and analysis of molecules for drug development is a challenging problem today, and that's because exactly describing and calculating all of the quantum properties of all the atoms in the molecule is a computationally difficult task, even for our supercomputers. But a quantum computer could do better, because it operates using the same quantum properties as the molecule it's trying to simulate. So future large-scale quantum simulations for drug development could perhaps lead to treatments for diseases like Alzheimer's, which affects thousands of lives.

And thirdly, my favorite quantum application is teleportation of information from one location to another without physically transmitting the information. Sounds like sci-fi, but it is possible, because these fluid identities of the quantum particles can get entangled across space and time in such a way that when you change something about one particle, it can impact the other, and that creates a channel for teleportation. It's already been demonstrated in research labs and could be part of a future quantum internet. We don't have such a network as yet, but my team is working on these possibilities, by simulating a quantum network on a quantum computer. So we have designed and implemented some interesting new protocols such as teleportation among different users in the network and efficient data transmission and even secure voting.

So it's a lot of fun for me, being a quantum physicist. I highly recommend it.


We get to be explorers in a quantum wonderland. Who knows what applications we will discover next. We must tread carefully and responsibly as we build our quantum future. And for me, personally, I don't see quantum physics as a tool just to build quantum computers. I see quantum computers as a way for us to probe the mysteries of nature and reveal more about this hidden world outside of our experiences. How amazing that we humans, with our relatively limited access to the universe, can still see far beyond our horizons just using our imagination and our ingenuity. And the universe rewards us by showing us how incredibly interesting and surprising it is.

The future is fundamentally uncertain, and to me, that is certainly exciting.

Thank you.


ゲームをしてみましょう 想像してください あなたはラスベガスにいて カジノにあるコンピュータの1台で ゲームをすることにします ソリティアやチェスをするみたいに コンピュータは人間と同じように 手を進めることができます これはコインゲームです まずコインを表にして始めます 先手はコンピュータです コンピュータは コインの表裏を 反転させるかどうかを決めますが あなたに結果は知らされません 次はあなたの番です 同じようにコインを 反転させるかどうかを選択しますが 相手であるコンピュータには その結果は知らされません 最後に再びコンピュータが コインを反転させるかを選びます この3回のプレイの後 コインの表裏が明かされます 表が出たらコンピュータの勝ちで 裏ならあなたの勝ちです

とても単純なゲームですが 皆さんが正直にゲームして コインが公正なものなら このゲームに50%の確率で 勝てるはずです その確認のために コンピュータを相手に このゲームをするように学生に指示し 多くの試行を繰り返したところ 勝率は50%か 50%に近い値となり 予想通りの結果になりました 何だか退屈なゲームですよね?

でも量子コンピュータで このゲームをしたらどうなるでしょう? ラスベガスのカジノには 私の知る限り 量子コンピュータはありませんが IBMは動作する量子コンピュータを 製作しました これがその写真です

量子コンピュータとは何でしょうか 量子物理学は 原子や 電子や光子といった素粒子の 振る舞いを説明します 量子コンピュータは このような素粒子の動きを 制御することで動作するので 従来型のコンピュータとは 全く異なります 量子コンピュータは 従来型のコンピュータを 単に強化したものではありません 電球がろうそくを強化したものでは ないのと同じです どんなにろうそくを改良しても 電球は作れません 電球はまったく異なる技術であり より高度な科学的理解に基づいています 同様に量子コンピュータは 新しいタイプの機器であって 量子物理学に基づいており 電球が社会を変革させたように 量子コンピュータは 私たちの生活の多くの面で 影響を与える可能性を秘めています 安全に関するニーズや 医療、インターネットにまで及びます

そのような機器を作ろうと 世界中の企業が取り組んでいます その素晴らしさを知るために 先ほどのゲームを 量子コンピュータで プレイしてみましょう IBMの量子コンピュータに ここからログインできます つまり遠隔操作でゲームが できるのです 皆さんだってできます プレイの前に確認です 事前にTEDから 電子メールが送られてきましたね 皆さんがゲームをプレイするとしたら コインを反転させるかどうか 決めて欲しいというお願いでした 実際の質問は 円と正方形の どちらかを選択するというものでした 実は 円は「コインを反転させる」 正方形は「反転させない」という 意味だったのです 372通の回答を頂きました ありがとう これで量子コンピュータを相手に 皆さんの選択を利用して 372回ゲームができます すぐに決着がつくゲームなので 今ここで結果をお見せできます

残念ですが 皆さんの勝率は 芳しくありません


量子コンピュータがほとんどの回で 勝利を収めています 数回負けたのはコンピュータ内部の エラーによるものでした


ではどのようにして 見事に連勝したのでしょうか? マジックか いかさまのようにも 思われますが 実際には量子物理学が 作用しているだけです その仕組みを説明しましょう 通常のコンピュータはコインの表裏を ビットでシミュレートします つまり0か1 あるいは コンピュータチップ内の 反転させる させないで表すのです 量子コンピュータは全く異なります 量子ビットは より流動的で 2値的なものではありません 0である可能性と 1である可能性の 重ね合わせ つまり 0と1の組み合わせとして 存在することが出来ます 言い換えると その実体は 連続的な存在なのです それは例えば 0である確率が70%で 1である確率が30%だったり それぞれの確率が80%と20%や 60%と40%だったりするのです 無限の組み合わせがあり得ます カギとなる考え方は 0か1のどちらかだけであるといった 考えを捨て 不確定性を認めることです このゲームにおいては 量子コンピュータは 表と裏 つまり0と1の 混合状態を作り出して プレイヤーの選択肢 つまり 反転させるかどうかに関わらず 重ね合わせ状態が 変化しないようにできます それは2種類の液体の混合液を 攪拌するようなものです 攪拌するしないに関わらず 液体は混合液のままであるのと同じです しかし 最後の手番で 量子コンピュータは0と1を分離し 必ず表を出し 皆さんは毎回負けることになります


ちょっと不思議だと 思っても当然のことです 表と裏の混在なんて ふつうのコインにはありえません 日常生活の中では この流動的な量子論的リアリティを 経験することはありません もし量子によって混乱しているなら 気にしないで すぐ理解できます


量子の奇妙なふるまいを 経験しないにしても その効果を実際に 見ることができます 皆さんは 自分でデータを ご覧になりました 量子コンピュータが勝利したのは 重ね合わせと不確定性を 利用したからです そして このような量子の性質は コインを使ったゲームで 勝利するに留まらず 未来の量子技術を 築くほどまでに強力なのです ここで私たちの生活を変える 可能性のある応用例を 3つ示します

まず第1に 量子の不確定性は 秘密鍵の生成に利用できるかもしれません ある所から別の場所に メッセージを暗号化して送る際に 盗聴者が秘密裏に鍵を 完璧にコピーすることを防止できる 量子の不確定性を利用した暗号鍵です 暗号鍵を盗聴するには 量子物理学の法則を 破らなければなりません この様な解読不可能な暗号化は 世界中の銀行やその他の機関によって すでに試験が行われています 現在 全世界で170億台もの機器が ネットに接続されています 量子暗号が将来に与える影響を 想像してみてください

2つ目に 量子技術は医療や医薬品も 変革させるかもしれません 例えば医薬品開発での 分子設計と分析が 現時点の難題です 分子内のすべての原子 そしてその原子の量子特性を 正確に記述し 計算することは スーパーコンピュータの計算能力さえも 超えた困難な作業だからです しかし量子コンピュータなら 上手くいくかもしれません シミュレートしようとしている分子と 同じ量子特性を利用して 動作しているのですから 未来の医薬品開発における 大規模な量子シミュレーションは 多くの人命にかかわる アルツハイマー疾患などの治療を 可能にするかもしれません

そして3つ目は わたしのお気に入りの応用例で ある場所から他の場所への 情報のテレポーテーションです 情報を物理的に 送信する訳ではありません SFのように聞こえますが可能なのです それは量子的な粒子の持つ 流動的な性質が 時空を超えて 「量子もつれ」を生じさせます これは 一方の粒子を変化させたとき 他方の粒子に影響が及ぶことで テレポーテーションの 伝送路を創り出せるのです すでに研究所で実証されていて 将来の量子インターネットの 構成要素になるかもしれません そのようなネットワークは まだありませんが 私たちのチームは 量子コンピュータ上で 量子ネットワークのシミュレーションを行い その可能性に取り組んでいます 私たちは興味深いプロトコル(通信規約)を 設計し実装しました ネットワーク上の異なるユーザー間の テレポーテーションや 効率的なデータ送信や 安全な投票プロトコルさえあります

量子物理学者である私にとって 多くの楽しみがあります 皆さんにもお勧めしますよ


私たちは 量子の不思議の国の 探検家になるのです 次にどんな応用が見つかるか 誰にも分かりません 量子の未来を築く時には 慎重かつ責任を持って 歩みを進めなければなりません そして私自身は 量子物理学を 量子コンピュータを作るためだけの 道具とは考えていません 自然の神秘を探り 私たちの経験を超えた 世界のベールをはがす一つの手段として 量子コンピュータを 見ているのです 私たち人類の素晴らしさは 宇宙へのアクセスが 比較的限られているのにも関わらず 想像力と独創性を活用することで その先の世界も 見通せることにあります 宇宙は それに応えるように 宇宙が どれほど興味深く 驚異的であるかを見せてくれます

未来は基本的に不確定であることが 私をとてもワクワクさせるのです



― もっと見る ―
― 折りたたむ ―


  • 主語
  • 動詞
  • 助動詞
  • 準動詞
  • 関係詞等